(0) Obligation:

Clauses:

app3_a(Xs, Ys, Zs, Us) :- ','(app(Xs, Ys, Vs), app(Vs, Zs, Us)).
app3_b(Xs, Ys, Zs, Us) :- ','(app(Ys, Zs, Vs), app(Xs, Vs, Us)).
app([], Ys, Ys).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).

Query: app3_b(g,g,g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

appA([], T25, T25).
appA(.(T34, T35), T36, .(T34, T38)) :- appA(T35, T36, T38).
appB([], T59, T59).
appB(.(T66, T67), T68, .(T66, X74)) :- appB(T67, T68, X74).
app3_bC(T9, [], T18, T13) :- appA(T9, T18, T13).
app3_bC(T9, .(T47, T48), T49, T13) :- appB(T48, T49, X50).
app3_bC(T9, .(T47, T48), T49, T13) :- ','(appB(T48, T49, T52), appA(T9, .(T47, T52), T13)).

Query: app3_bC(g,g,g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
app3_bC_in: (b,b,b,f)
appA_in: (b,b,f)
appB_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

app3_bC_in_ggga(T9, [], T18, T13) → U3_ggga(T9, T18, T13, appA_in_gga(T9, T18, T13))
appA_in_gga([], T25, T25) → appA_out_gga([], T25, T25)
appA_in_gga(.(T34, T35), T36, .(T34, T38)) → U1_gga(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
U1_gga(T34, T35, T36, T38, appA_out_gga(T35, T36, T38)) → appA_out_gga(.(T34, T35), T36, .(T34, T38))
U3_ggga(T9, T18, T13, appA_out_gga(T9, T18, T13)) → app3_bC_out_ggga(T9, [], T18, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U4_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
appB_in_gga([], T59, T59) → appB_out_gga([], T59, T59)
appB_in_gga(.(T66, T67), T68, .(T66, X74)) → U2_gga(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
U2_gga(T66, T67, T68, X74, appB_out_gga(T67, T68, X74)) → appB_out_gga(.(T66, T67), T68, .(T66, X74))
U4_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, X50)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U5_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_ggga(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U6_ggga(T9, T47, T48, T49, T13, appA_out_gga(T9, .(T47, T52), T13)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)

The argument filtering Pi contains the following mapping:
app3_bC_in_ggga(x1, x2, x3, x4)  =  app3_bC_in_ggga(x1, x2, x3)
[]  =  []
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
appA_in_gga(x1, x2, x3)  =  appA_in_gga(x1, x2)
appA_out_gga(x1, x2, x3)  =  appA_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x5)
app3_bC_out_ggga(x1, x2, x3, x4)  =  app3_bC_out_ggga
U4_ggga(x1, x2, x3, x4, x5, x6)  =  U4_ggga(x6)
appB_in_gga(x1, x2, x3)  =  appB_in_gga(x1, x2)
appB_out_gga(x1, x2, x3)  =  appB_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U5_ggga(x1, x2, x3, x4, x5, x6)  =  U5_ggga(x1, x2, x6)
U6_ggga(x1, x2, x3, x4, x5, x6)  =  U6_ggga(x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

app3_bC_in_ggga(T9, [], T18, T13) → U3_ggga(T9, T18, T13, appA_in_gga(T9, T18, T13))
appA_in_gga([], T25, T25) → appA_out_gga([], T25, T25)
appA_in_gga(.(T34, T35), T36, .(T34, T38)) → U1_gga(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
U1_gga(T34, T35, T36, T38, appA_out_gga(T35, T36, T38)) → appA_out_gga(.(T34, T35), T36, .(T34, T38))
U3_ggga(T9, T18, T13, appA_out_gga(T9, T18, T13)) → app3_bC_out_ggga(T9, [], T18, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U4_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
appB_in_gga([], T59, T59) → appB_out_gga([], T59, T59)
appB_in_gga(.(T66, T67), T68, .(T66, X74)) → U2_gga(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
U2_gga(T66, T67, T68, X74, appB_out_gga(T67, T68, X74)) → appB_out_gga(.(T66, T67), T68, .(T66, X74))
U4_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, X50)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U5_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_ggga(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U6_ggga(T9, T47, T48, T49, T13, appA_out_gga(T9, .(T47, T52), T13)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)

The argument filtering Pi contains the following mapping:
app3_bC_in_ggga(x1, x2, x3, x4)  =  app3_bC_in_ggga(x1, x2, x3)
[]  =  []
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
appA_in_gga(x1, x2, x3)  =  appA_in_gga(x1, x2)
appA_out_gga(x1, x2, x3)  =  appA_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x5)
app3_bC_out_ggga(x1, x2, x3, x4)  =  app3_bC_out_ggga
U4_ggga(x1, x2, x3, x4, x5, x6)  =  U4_ggga(x6)
appB_in_gga(x1, x2, x3)  =  appB_in_gga(x1, x2)
appB_out_gga(x1, x2, x3)  =  appB_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U5_ggga(x1, x2, x3, x4, x5, x6)  =  U5_ggga(x1, x2, x6)
U6_ggga(x1, x2, x3, x4, x5, x6)  =  U6_ggga(x6)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

APP3_BC_IN_GGGA(T9, [], T18, T13) → U3_GGGA(T9, T18, T13, appA_in_gga(T9, T18, T13))
APP3_BC_IN_GGGA(T9, [], T18, T13) → APPA_IN_GGA(T9, T18, T13)
APPA_IN_GGA(.(T34, T35), T36, .(T34, T38)) → U1_GGA(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
APPA_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPA_IN_GGA(T35, T36, T38)
APP3_BC_IN_GGGA(T9, .(T47, T48), T49, T13) → U4_GGGA(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
APP3_BC_IN_GGGA(T9, .(T47, T48), T49, T13) → APPB_IN_GGA(T48, T49, X50)
APPB_IN_GGA(.(T66, T67), T68, .(T66, X74)) → U2_GGA(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
APPB_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPB_IN_GGA(T67, T68, X74)
APP3_BC_IN_GGGA(T9, .(T47, T48), T49, T13) → U5_GGGA(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_GGGA(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_GGGA(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U5_GGGA(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → APPA_IN_GGA(T9, .(T47, T52), T13)

The TRS R consists of the following rules:

app3_bC_in_ggga(T9, [], T18, T13) → U3_ggga(T9, T18, T13, appA_in_gga(T9, T18, T13))
appA_in_gga([], T25, T25) → appA_out_gga([], T25, T25)
appA_in_gga(.(T34, T35), T36, .(T34, T38)) → U1_gga(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
U1_gga(T34, T35, T36, T38, appA_out_gga(T35, T36, T38)) → appA_out_gga(.(T34, T35), T36, .(T34, T38))
U3_ggga(T9, T18, T13, appA_out_gga(T9, T18, T13)) → app3_bC_out_ggga(T9, [], T18, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U4_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
appB_in_gga([], T59, T59) → appB_out_gga([], T59, T59)
appB_in_gga(.(T66, T67), T68, .(T66, X74)) → U2_gga(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
U2_gga(T66, T67, T68, X74, appB_out_gga(T67, T68, X74)) → appB_out_gga(.(T66, T67), T68, .(T66, X74))
U4_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, X50)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U5_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_ggga(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U6_ggga(T9, T47, T48, T49, T13, appA_out_gga(T9, .(T47, T52), T13)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)

The argument filtering Pi contains the following mapping:
app3_bC_in_ggga(x1, x2, x3, x4)  =  app3_bC_in_ggga(x1, x2, x3)
[]  =  []
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
appA_in_gga(x1, x2, x3)  =  appA_in_gga(x1, x2)
appA_out_gga(x1, x2, x3)  =  appA_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x5)
app3_bC_out_ggga(x1, x2, x3, x4)  =  app3_bC_out_ggga
U4_ggga(x1, x2, x3, x4, x5, x6)  =  U4_ggga(x6)
appB_in_gga(x1, x2, x3)  =  appB_in_gga(x1, x2)
appB_out_gga(x1, x2, x3)  =  appB_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U5_ggga(x1, x2, x3, x4, x5, x6)  =  U5_ggga(x1, x2, x6)
U6_ggga(x1, x2, x3, x4, x5, x6)  =  U6_ggga(x6)
APP3_BC_IN_GGGA(x1, x2, x3, x4)  =  APP3_BC_IN_GGGA(x1, x2, x3)
U3_GGGA(x1, x2, x3, x4)  =  U3_GGGA(x4)
APPA_IN_GGA(x1, x2, x3)  =  APPA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x1, x5)
U4_GGGA(x1, x2, x3, x4, x5, x6)  =  U4_GGGA(x6)
APPB_IN_GGA(x1, x2, x3)  =  APPB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x5)
U5_GGGA(x1, x2, x3, x4, x5, x6)  =  U5_GGGA(x1, x2, x6)
U6_GGGA(x1, x2, x3, x4, x5, x6)  =  U6_GGGA(x6)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP3_BC_IN_GGGA(T9, [], T18, T13) → U3_GGGA(T9, T18, T13, appA_in_gga(T9, T18, T13))
APP3_BC_IN_GGGA(T9, [], T18, T13) → APPA_IN_GGA(T9, T18, T13)
APPA_IN_GGA(.(T34, T35), T36, .(T34, T38)) → U1_GGA(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
APPA_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPA_IN_GGA(T35, T36, T38)
APP3_BC_IN_GGGA(T9, .(T47, T48), T49, T13) → U4_GGGA(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
APP3_BC_IN_GGGA(T9, .(T47, T48), T49, T13) → APPB_IN_GGA(T48, T49, X50)
APPB_IN_GGA(.(T66, T67), T68, .(T66, X74)) → U2_GGA(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
APPB_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPB_IN_GGA(T67, T68, X74)
APP3_BC_IN_GGGA(T9, .(T47, T48), T49, T13) → U5_GGGA(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_GGGA(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_GGGA(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U5_GGGA(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → APPA_IN_GGA(T9, .(T47, T52), T13)

The TRS R consists of the following rules:

app3_bC_in_ggga(T9, [], T18, T13) → U3_ggga(T9, T18, T13, appA_in_gga(T9, T18, T13))
appA_in_gga([], T25, T25) → appA_out_gga([], T25, T25)
appA_in_gga(.(T34, T35), T36, .(T34, T38)) → U1_gga(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
U1_gga(T34, T35, T36, T38, appA_out_gga(T35, T36, T38)) → appA_out_gga(.(T34, T35), T36, .(T34, T38))
U3_ggga(T9, T18, T13, appA_out_gga(T9, T18, T13)) → app3_bC_out_ggga(T9, [], T18, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U4_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
appB_in_gga([], T59, T59) → appB_out_gga([], T59, T59)
appB_in_gga(.(T66, T67), T68, .(T66, X74)) → U2_gga(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
U2_gga(T66, T67, T68, X74, appB_out_gga(T67, T68, X74)) → appB_out_gga(.(T66, T67), T68, .(T66, X74))
U4_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, X50)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U5_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_ggga(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U6_ggga(T9, T47, T48, T49, T13, appA_out_gga(T9, .(T47, T52), T13)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)

The argument filtering Pi contains the following mapping:
app3_bC_in_ggga(x1, x2, x3, x4)  =  app3_bC_in_ggga(x1, x2, x3)
[]  =  []
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
appA_in_gga(x1, x2, x3)  =  appA_in_gga(x1, x2)
appA_out_gga(x1, x2, x3)  =  appA_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x5)
app3_bC_out_ggga(x1, x2, x3, x4)  =  app3_bC_out_ggga
U4_ggga(x1, x2, x3, x4, x5, x6)  =  U4_ggga(x6)
appB_in_gga(x1, x2, x3)  =  appB_in_gga(x1, x2)
appB_out_gga(x1, x2, x3)  =  appB_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U5_ggga(x1, x2, x3, x4, x5, x6)  =  U5_ggga(x1, x2, x6)
U6_ggga(x1, x2, x3, x4, x5, x6)  =  U6_ggga(x6)
APP3_BC_IN_GGGA(x1, x2, x3, x4)  =  APP3_BC_IN_GGGA(x1, x2, x3)
U3_GGGA(x1, x2, x3, x4)  =  U3_GGGA(x4)
APPA_IN_GGA(x1, x2, x3)  =  APPA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x1, x5)
U4_GGGA(x1, x2, x3, x4, x5, x6)  =  U4_GGGA(x6)
APPB_IN_GGA(x1, x2, x3)  =  APPB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x5)
U5_GGGA(x1, x2, x3, x4, x5, x6)  =  U5_GGGA(x1, x2, x6)
U6_GGGA(x1, x2, x3, x4, x5, x6)  =  U6_GGGA(x6)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 9 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPB_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPB_IN_GGA(T67, T68, X74)

The TRS R consists of the following rules:

app3_bC_in_ggga(T9, [], T18, T13) → U3_ggga(T9, T18, T13, appA_in_gga(T9, T18, T13))
appA_in_gga([], T25, T25) → appA_out_gga([], T25, T25)
appA_in_gga(.(T34, T35), T36, .(T34, T38)) → U1_gga(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
U1_gga(T34, T35, T36, T38, appA_out_gga(T35, T36, T38)) → appA_out_gga(.(T34, T35), T36, .(T34, T38))
U3_ggga(T9, T18, T13, appA_out_gga(T9, T18, T13)) → app3_bC_out_ggga(T9, [], T18, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U4_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
appB_in_gga([], T59, T59) → appB_out_gga([], T59, T59)
appB_in_gga(.(T66, T67), T68, .(T66, X74)) → U2_gga(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
U2_gga(T66, T67, T68, X74, appB_out_gga(T67, T68, X74)) → appB_out_gga(.(T66, T67), T68, .(T66, X74))
U4_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, X50)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U5_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_ggga(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U6_ggga(T9, T47, T48, T49, T13, appA_out_gga(T9, .(T47, T52), T13)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)

The argument filtering Pi contains the following mapping:
app3_bC_in_ggga(x1, x2, x3, x4)  =  app3_bC_in_ggga(x1, x2, x3)
[]  =  []
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
appA_in_gga(x1, x2, x3)  =  appA_in_gga(x1, x2)
appA_out_gga(x1, x2, x3)  =  appA_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x5)
app3_bC_out_ggga(x1, x2, x3, x4)  =  app3_bC_out_ggga
U4_ggga(x1, x2, x3, x4, x5, x6)  =  U4_ggga(x6)
appB_in_gga(x1, x2, x3)  =  appB_in_gga(x1, x2)
appB_out_gga(x1, x2, x3)  =  appB_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U5_ggga(x1, x2, x3, x4, x5, x6)  =  U5_ggga(x1, x2, x6)
U6_ggga(x1, x2, x3, x4, x5, x6)  =  U6_ggga(x6)
APPB_IN_GGA(x1, x2, x3)  =  APPB_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPB_IN_GGA(.(T66, T67), T68, .(T66, X74)) → APPB_IN_GGA(T67, T68, X74)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPB_IN_GGA(x1, x2, x3)  =  APPB_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPB_IN_GGA(.(T66, T67), T68) → APPB_IN_GGA(T67, T68)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPB_IN_GGA(.(T66, T67), T68) → APPB_IN_GGA(T67, T68)
    The graph contains the following edges 1 > 1, 2 >= 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPA_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPA_IN_GGA(T35, T36, T38)

The TRS R consists of the following rules:

app3_bC_in_ggga(T9, [], T18, T13) → U3_ggga(T9, T18, T13, appA_in_gga(T9, T18, T13))
appA_in_gga([], T25, T25) → appA_out_gga([], T25, T25)
appA_in_gga(.(T34, T35), T36, .(T34, T38)) → U1_gga(T34, T35, T36, T38, appA_in_gga(T35, T36, T38))
U1_gga(T34, T35, T36, T38, appA_out_gga(T35, T36, T38)) → appA_out_gga(.(T34, T35), T36, .(T34, T38))
U3_ggga(T9, T18, T13, appA_out_gga(T9, T18, T13)) → app3_bC_out_ggga(T9, [], T18, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U4_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, X50))
appB_in_gga([], T59, T59) → appB_out_gga([], T59, T59)
appB_in_gga(.(T66, T67), T68, .(T66, X74)) → U2_gga(T66, T67, T68, X74, appB_in_gga(T67, T68, X74))
U2_gga(T66, T67, T68, X74, appB_out_gga(T67, T68, X74)) → appB_out_gga(.(T66, T67), T68, .(T66, X74))
U4_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, X50)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)
app3_bC_in_ggga(T9, .(T47, T48), T49, T13) → U5_ggga(T9, T47, T48, T49, T13, appB_in_gga(T48, T49, T52))
U5_ggga(T9, T47, T48, T49, T13, appB_out_gga(T48, T49, T52)) → U6_ggga(T9, T47, T48, T49, T13, appA_in_gga(T9, .(T47, T52), T13))
U6_ggga(T9, T47, T48, T49, T13, appA_out_gga(T9, .(T47, T52), T13)) → app3_bC_out_ggga(T9, .(T47, T48), T49, T13)

The argument filtering Pi contains the following mapping:
app3_bC_in_ggga(x1, x2, x3, x4)  =  app3_bC_in_ggga(x1, x2, x3)
[]  =  []
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
appA_in_gga(x1, x2, x3)  =  appA_in_gga(x1, x2)
appA_out_gga(x1, x2, x3)  =  appA_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x5)
app3_bC_out_ggga(x1, x2, x3, x4)  =  app3_bC_out_ggga
U4_ggga(x1, x2, x3, x4, x5, x6)  =  U4_ggga(x6)
appB_in_gga(x1, x2, x3)  =  appB_in_gga(x1, x2)
appB_out_gga(x1, x2, x3)  =  appB_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U5_ggga(x1, x2, x3, x4, x5, x6)  =  U5_ggga(x1, x2, x6)
U6_ggga(x1, x2, x3, x4, x5, x6)  =  U6_ggga(x6)
APPA_IN_GGA(x1, x2, x3)  =  APPA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPA_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPA_IN_GGA(T35, T36, T38)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPA_IN_GGA(x1, x2, x3)  =  APPA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPA_IN_GGA(.(T34, T35), T36) → APPA_IN_GGA(T35, T36)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPA_IN_GGA(.(T34, T35), T36) → APPA_IN_GGA(T35, T36)
    The graph contains the following edges 1 > 1, 2 >= 2

(22) YES